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“Given the importance of the public understanding
of health, economic, and environmental risk, it may
appear remarkable that so little firm guidance can
be given about how best to communicate
uncertainty.”

-- Spiegelhalter, Pearson, and Short, Science, 2011
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« Evacuate?




Zombie Apocalvpse Forecast Center :
PQ§s|bIe mvasmn routes 7 May 2013 - Evacuate?
— Decision is
harder!

 More information
to process

* Choices less
clear
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Visualizing output of computational models

Computational modeling used to support
decisions in a wide range of applications

— Engineering design, medicine, transportation, public
safety, environmental policy, ...

Computational models inevitably have
associated errors and uncertainties

Substantial progress has been made on
uncertainty quantification of such models

Much less progress has been made on
uncertainty communication to decision makers




Uncertainty communication

* We have all had experience with uncertainty
communication!

Estimated
Distance (m) Real Hallway recalibration of real
i walking

visual-only recalibration
of real walking

recalibration of imagined
walking

visual only recalibration
of imagined walking

change post-test vs. pre—test

Intended Distance (m)

visually faster visually slower




Uncertainty communication

« What about more complex data?
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— Can people effectively use such visualizations?
— What is the measure of effectiveness?




Visual representations of uncertainty

« Two alternatives are common:

— Using separate visual encodings for data and
uncertainty of data

— Direct encoding of variability of data




Visual representations of uncertainty

« Two alternatives are common:

— Using separate visual encodings for data and
uncertainty of data

Uncertainty in surface

A
L *
geometry: .
Grigorian & Rheingans,
IEEE-TVCG, 2004 *

value only value plus uncertainty

— What is the meaning of the uncertainty “value®?




Visual representations of uncertainty

« Two alternatives are common:

— Direct encoding of variability of data

Uncertainty in surface

0 . 1Y
geometry:
Grigorian & Rheingans, S
IEEE-TVCG, 2004 , A

value only value plus uncertainty

— What is the impact on visual bandwidth?




Visual representations of uncertainty

« Two alternatives are common:

— Using separate visual encodings for data and
uncertainty of data

— Direct encoding of variability of data

Cliburn et al., Computers & Graphics, 2002

— What is the impact on visual bandwidth?




How do we know what works?

« Subjective reporting of uncertainty “value” is
common

Click on the map region for which
information is least certain overall

MacEachren et al., IEEE-TVCG, 2012

— Question of interest: how well users can distinguish
between two different visually represented values?
* In many studies, uncertainty is the only attribute evaluated!




How do we know what works?

Subjective reporting of uncertainty “value” is
common
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— Question of interest: “intuitive” sense of uncertainty.
— In many studies, uncertainty is the only attribute evaluated!




How do we know what works?

« Subjective reporting of uncertainty “value” is
common
— Problems:
» Uncertainty rarely defined in a precise manner

» Performance-preference dissociation
« Comparisons of visual channels rarely well controlled

 \What about task-based user studies?

— Problems:
« Difficult to do controlled studies
* No direct way to associate visualization with cognition




How do we know what works?

* Reporting of probability rather than uncertainty
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Hurricane Rita
September 22, 2005
10 PM CDT Thursday
MWS TPCiMational Hurricane Center
Advisory 22
Current Center Location 26.2 M 90.3 W
Max Sustained Wind 140 mph
Current Movement WHW at 10 mph
{® Current Center Location
® Forecast Center Positions
H Sustained wind = 73 mph
5 Sustained wind 39-73 mph
& Potential Day 1-3 Track Area
B Hurricane Warning
mmm Tropical Storm Warning
Tropical Storm Watch

Approx. Distance Scale ( Statute Miles )
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— May not say

much about
cognition of
uncertainty




How do we know what works?

 \What to do???




How do we know what works?

[T]he design of effective visualizations is as much a
challenge for cognitive science as for computer and
Information science, and ... these disciplines must
collaborate closely on the development of new
Information technologies and visualization design.

Mary Hegarty
IEEE Vis 2010




How do we know what works?

« [T]he design of effective visualizations is as much a
challenge for cognitive science as for computer and
Information science, and ... these disciplines must
collaborate closely on the development of new information
technologies and visualization design.

Mary Hegarty
IEEE Vis 2010




How do we know what works?

« [T]he design of effective visualizations is as much a
challenge for cognitive science as for computer and
Information science, and ... these disciplines must
collaborate closely on the development of new information
technologies and visualization design.

Mary Hegarty
IEEE Vis 2010

(Computer Science /Perceptual Science )
Computational theoretical Theoretical frameworks based
framework on cognitive and neuroscience
Testable theories Testable theories

Application problems Basic science problems

J




What we know about cognition of uncertainty

* Naive users have difficulty using uncertain

iInformation and often resort to heuristics
Tversky & Kahneman, Science, 1974

* Uncertainty even
misunderstood by

scientists!
Belia et al., Psych. Methods, 2005




What we know about cognition of uncertainty

* Perceptual issues interact with cognition to

cause additional difficulties
Newman & Scholl, Psycho. Bull. Rev., 2012
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What we know about cognition of uncertainty

« Sometimes information about uncertainty
improves accuracy of decision making

— At least for weather...

Joslyn et al., Weather and Forecasting, 2007
Joslyn & LeClerc, JEP:Applied, 2012




.
Our approach (the big picture)

 Modeling, Display, and Understanding
Uncertainty in Simulations for Policy Decision
Making
— $3m, 4 year NSF-funded research effort

— Four institutions

» University of Utah (lead)

— Ross Whitaker (PI), Sarah Creem-Regehr, Robert Kirby, Steven
Krueger, Miriah Meyer, William Thompson

» Clemson University
— Donald House

» University of California — Santa Barbara
— Mary Hegarty, Michael Goodchild

 Texas A&M

— Michael Lindel, Carla Prater




Our approach (the big picture)

Core 2. Visualization
Meyer, House, Whitaker

Core 3. Cognition
Creem-Regehr, Hegarty, Lindell,
Thompson, Meyer, Goodchild

Core 1. Modeling
Kirby, Krueger,
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Applications
Air Quality (Utah DEQ})
Wildfire Hazard (EGBCC)
Hurricane Evacuation
{NHC, Brazos TX EMD)




I
Application: Air Quality Management

 Goal: Model PM2.5 distribution in Utah, and

understand the relationship between sources
and levels

Elemental Carbon

Sulfate

. Organic Carb
PM2.5 Creation rganic Harbon

Ammonium Nitrate

Percent of Total PM2.5

What we breathe

Complex Terrain ...
Complex Problem

. ,p’f? 3t
How it is created b L

Input and Boundary Complexities




I
Application: Air Quality Management

 Goal: Model PM2.5 Distribution in Utah, and
understand the relationship between sources
and levels

Reducing
Uncertainties




Application: Fire Risk Management

* Pre-position wildfire fighting resources

__.Nt al Significant Wildla dF Potential Outlook
o 77— dJune 1to June 30, 2012

. \ \&) #M-ﬂ"‘
ety LA,

Prediction in June, 2012 Reallty in July, 2012




Application: Fire Risk Management

« Some of the sources of uncertainty:
— Wind direction and speed
— Precipitation
— Relative humidity
— Ruel types (trees and grass)
— Random “unforeseen” events (e.g. lightening)




Application: Hurricane Evacuation Management

« Support for decisions about evacuation areas

Mote: The cone contains the probable p;a]t_l\_ of the storm center but does not show
the size of the storm. Hizardous condilions can occur outside of the cone.
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urricane Sandy Current Information

iy Octode a2z Center Location 26.7 N 76
Max Sustained Wind B9 mph
Move L & mph

Potential Track Area: Watches:
': ~~, Day 13 (Z£ Dayas Hurricane

Friday, October 26, 2012

— Center is forecast path
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Sunday, October 28, 2012

— Width is 67% of five past years of forecasts




Application: Hurricane Evacuation Management

« Some of the sources of uncertainty:

— Wind conditions (at different heights in the
atmosphere)

— Sea-surface water temperature

— Different dynamics models (having different variants
of humidity models, etc.)

— Incorporation of historical track history




Our approach (cognition)

* Three phases:

— Basic perceptual science concerning comprehension
of visually presented uncertainty

— Evaluations of the effect of context and instructions

— Examination of uncertainty comprehension in domain-
specific applications




.
The first step

* Adopt a Bayesian view of uncertainty
quantification

— Use probability distributions to model both random
events and partial knowledge of the world.

« Base evaluation on performance in Bayesian
inference tasks

— Presumption is that such tasks require cognition of

uncertainty, not just perception of amount of
uncertainty.

o Start simple!




.
The first step

« Can people reason about visually presented
uncertainty in a simple but non-trivial situation?

— Limit to maximum likelihood Bayesian classification
task

— Limit to univariate normal distributions
« Still allows tasks involving multiple instances of univariate
distributions, indexed by some other variable
— Limit to participants naive to the mathematics of
maximum likelihood Bayesian classification

* Precludes solutions involving extraction of quantitative
properties of distributions, followed by mathematical (non-
visual) analysis of those values.




Maximum likelthood classification task

Maximum likelihood (minimum error)
classification:
— Choose §; such that P(S;|x) = P(S;|x) for all j

« S;, i=1,..,N,is a set of class labels
* x is a set of features

P(x|S;)P(S;)
P(x)

Bayes’ law: P(S;|x) =

Under a set of (very) restrictive assumptions, the
maximum likelihood classifier becomes:

— Choose S; such that P(x|S;) = P(x|S;) for all j




Scenario

Almost all current weather forecasts include a specific prediction
for future high and low temperatures, even though the
temperature may end up being different than predicted. The
plots you will see in this experiment represent the outcomes of
two new temperature forecasting systems for a specific date,
along with the actual high temperature for that date. Both
systems report forecast temperatures in a manner that indicates
the amount of uncertainty in the predictions for the given day.
Neither system is more accurate than the other on average over
the course of the year. For each plot, you will be asked to
indicate which of the two systems made the more accurate
forecast, taking into account the information about the
uncertainty of the forecast in your answer.




Scenario

The output of each forecasting system will be indicated using
this graph. The right portion shows how the temperature
forecasts are represented. There are examples of the forecast
graphic representing three different levels of uncertainty, paired
with their associated probabilistic bell curves. The left portion of
the screen shows the graph that you will be using to make your
decision. The higher a graphic is on the graph, the higher the
temperature forecast it represents. The cross in the middle
represents the actual temperature for the forecasted day. Please
compare the actual temperature with the temperature forecasts
to decide which forecast was more accurate.”




Experimental framework

« Explore how choice of “best forecast” is affected
by:
— Nature of visual indication of forecast uncertainty

— Relative uncertainty of the forecasts
* As quantified using a normal distribution pdf

* Hypotheses:
— Choice is affected by nature of visual indicator
— Choice is affected by nature of relative uncertainties

— Some/all visual indicators produce “better” choices
than a nearest mean strategy
« Better in Bayesian sense




Candidate visual encodings

 Vertical position of glyph indicates mean value




Candidate visual encodings

— First three directly encode distribution of possible
temperature values

— Last two independently encode value and uncertainty
of value




conf_ 95 trials

Low Uncertainty

N

Moderate Uncertainty
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WeatherNet Recorded Temperature StormWatch
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Candidate distributions

 Distribution set 1:

— Small overlap of
distributions al ﬂ

— Decision boundary
biased towards
distribution with 2
smaller o

« Smaller o =>

mean, = -0.5, stdev1 =0.3750; mean,, = 0.5, stdev2 = 0.1250, class boundaries: 0.20, 1.05
3.5

2.5

1.5F

“more certain” n




Candidate distributions

* Distribution set 2:

— Small overlap of
distributions

— Decision boundary
biased towards
distribution with
smaller o

« Smaller o =>

mean, = -0.5, stdev1 =0.1786; mean,, = 0.5, stdev2 = 0.0714, class boundaries: 0.20, 1.18

“more certain”




Candidate distributions

 Distribution set 3:

— Large overlap of
distributions 0.6

— Decision boundary
biased away from
distribution with 0.4}
smaller o

« Smaller o =>

mean, = -0.5, stdev1 =1.1160; mean, = 0.5, stdev2 = 0.7440, class boundaries: -0.20, 2.80
0.7

0.5r

0.31

“more certain” 02l




Candidate distributions

 Distribution set 4:

— Large overlap of
distributions 0.8}

— Decision boundary o
biased away from 0.6}
distribution with 0.5}
smaller o

mean, = -0.5, stdev1 =1.3950; mean, = 0.5, stdev2 = 0.4650, class boundaries: -0.20, 1.45
0.9

0.4

e Smaller o =>

@ 0o 0.3}
more certain

0.21




+ ++++ +

H
+ ++++ +

—

-@-
+ ++++ +

—a—

Distribution set 1




Distribution set 2
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Preliminary results

« Bias in decisions indicated by a switch from favoring
distribution with more uncertainty (left below) to
distribution with less uncertainty (right below)

— Plots from logistic regression:
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Preliminary results

 Distribution set 1 (small overlap of distributions)
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Preliminary results

 Distribution set 2 (small overlap of distributions)
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Preliminary results:

 Distribution set 3 (large overlap of distributions)
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Preliminary results

 Distribution set 4 (large overlap of distributions)
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Preliminary results

 Distribution sets 1 and 2 (small overlap of distributions)
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Preliminary results

 Distribution sets 3 and 4 (large overlap of distributions)
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Preliminary results -- discussion

 Distribution sets 1 and 2 (small overlap of
distributions)

— Distribution-based glyphs show little or no
uncertainty-based bias

— Dot-based glyphs show a bias favoring more certain
distribution
» Dot-based glyphs opposite to optimal decision bias

 Distribution sets 3 and 4 (large overlap of
distributions)

— All glyphs show uncertainty-based bias favoring more
certain distribution
» Consistent with optimal decision bias




Moving forward

* |s support of Bayesian inference what matters?

— We know that people have a hard time making
unbiased decisions under uncertainty

— We also know that computer are quite good at this

» Shouldn’t a “good” visualization just provide the answer?




Moving forward

* When is visualizing uncertainty most important?
— Analysis vs. exploration
— Decision support vs. explanation

« Can visually presented uncertainty help
structure a user’s reasoning?
— Compensate for bias
— Draw attention to relevant information

— Slow down inference process to allow for a more
reasoned response
e System 2 processing




Moving forward

« Should we move beyond Bayesian
representations of uncertainty?

— They fit well with existing methods of uncertainty
quantification

— ... but it may be that visualizing other types of
uncertainty is key in policy decision making
» Separately quantifying likelihood from evidence

« What about time?

— Reasoning about temporal events
— Reasoning process executing over time
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