TOWARDS ECOLOGICAL VALIDITY IN EVALUATING UNCERTAINTY

P Samuel QuinanSarah H. Creem-RegehrMiriah Meyer

ECOLOGICAL VALIDITY¹

¹ how closely the experimental setting matches the setting in which the results will be applied

¹ how closely the experimental setting matches the setting in which the results will be applied

previous **design study** centered around improving the efficacy of visualizations in meteorological decisions

previous **design study** centered around improving the efficacy of visualizations in meteorological decisions

determining how visualizations affect decisions is incredibly difficult

previous design study centered around improving the efficacy of visualizations in meteorological decisions

determining how visualizations affect decisions is incredibly difficult

decision-making contexts may require fundamentally different evaluations

previous design study centered around improving the efficacy of visualizations in meteorological decisions

THE FORECASTING PROCESS

AGGREGATE MENTAL MODEL

⁴⁶ Thus, simply showing a complex visualization, expecting a user to extract the necessary information, and to be finished is an oversimplification of how complex visualizations are used. ⁹⁹

- Trafton and Hoffman, 2007

WILDFIRE POTENTIAL

Should Utah lend firefighting teams to Colorado?

The complexities of real-world decisions are difficult (if not impossible) to model in a controlled lab study.

THE CURRENT STATE OF VISUALIZATION EVALUATION

USER STUDIES

11

USER STUDIES

CASE STUDIES

USER STUDIES control

CASE STUDIES

→ realism

USER STUDIES

tell us why an effect exists, but relevance is questionable

CASE STUDIES

→ realism

USER STUDIES

tell us why an effect exists, but relevance is questionable

CASE STUDIESrealism

demonstrate that a relevant effect exists, but why remains unclear

DESIGNING FOR ECOLOGICAL VALIDITY

GOAL: to evaluate the effect of uncertainty visualizations on forecasting

GOAL: to evaluate the effect of uncertainty visualizations on forecasting

- five week, longitudinal study

GOAL: to evaluate the effect of uncertainty visualizations on forecasting

- five week, longitudinal study
- five quasi-expert student forecasters

GOAL: to evaluate the effect of uncertainty visualizations on forecasting

- five week, longitudinal study
- five quasi-expert student forecasters
- forecasted daily high temperatures at multiple locations

GOAL: to evaluate the effect of uncertainty visualizations on forecasting

- five week, longitudinal study
- five quasi-expert student forecasters
- forecasted daily high temperatures at multiple locations
- added uncertainty visualizations, three of five weeks

GOAL: to evaluate the effect of uncertainty visualizations on forecasting

- five week, longitudinal study
- five quasi-expert student forecasters
- forecasted daily high temperatures at multiple locations
- added uncertainty visualizations, three of five weeks
- treated forecasting process like a black-box

GOAL: to evaluate the effect of uncertainty visualizations on forecasting

- five week, longitudinal study
- five quasi-expert student forecasters
- forecasted daily high temperatures at multiple locations
- added uncertainty visualizations, three of five weeks
- treated forecasting process like a black-box

WEEK 1 baseline WEEK 2 WEEK 3 WEEK 4 WEEK 5 baseline

GOAL: to evaluate the effect of uncertainty visualizations on forecasting

- five week, longitudinal study
- five quasi-expert student forecasters
- forecasted daily high temperatures at multiple locations
- added uncertainty visualizations, three of five weeks
- treated forecasting process like a black-box

WEEK 1 baseline **WEEK 2** plume diagrams WEEK 3 WEEK 4 WEEK 5 baseline

GOAL: to evaluate the effect of uncertainty visualizations on forecasting

- five week, longitudinal study
- five quasi-expert student forecasters
- forecasted daily high temperatures at multiple locations
- added uncertainty visualizations, three of five weeks
- treated forecasting process like a black-box

WEEK 1 baseline **WEEK 2** plume diagrams **WEEK 3** mean + std dev WEEK 4 WEEK 5 baseline

GOAL: to evaluate the effect of uncertainty visualizations on forecasting

- five week, longitudinal study
- five quasi-expert student forecasters
- forecasted daily high temperatures at multiple locations
- added uncertainty visualizations, three of five weeks
- treated forecasting process like a black-box

WEEK 1 baseline **WEEK 2** plume diagrams **WEEK 3** mean + std dev **WEEK 4** spaghetti plots WEEK 5 baseline

GOAL: to evaluate the effect of uncertainty visualizations on forecasting

- five week, longitudinal study
- five quasi-expert student forecasters
- forecasted daily high temperatures at multiple locations
- added uncertainty visualizations, three of five weeks
- treated forecasting process like a black-box
- accuracy with vs. without additional uncertainty visualizations

WEEK 1 baseline **WEEK 2** plume diagrams **WEEK 3** mean + std dev **WEEK 4** spaghetti plots WEEK 5 baseline

DESIGN CHOICE 1 Working with Quasi-Experts

- senior, self-selected members of undergraduate forecasting club

- senior, self-selected members of undergraduate forecasting club

- publicly release daily 5-day forecasts, which are actually used

- not yet professionals...

- senior, self-selected members of undergraduate forecasting club

- publicly release daily 5-day forecasts, which are actually used

- senior, self-selected members of undergraduate forecasting club
- publicly release daily 5-day forecasts, which are actually used
- not yet professionals...but also not professionals

- no single model for how meteorologists forecast the weather

- no single model for how meteorologists forecast the weather

- experimental control changes the decision-making context

- no single model for how meteorologists forecast the weather
- experimental control changes the decision-making context
- reflects how a single visualization affects the forecasting process

Ogden-Hinckley [KOGD] (41.19361, 247.98361) Forecast: 03Z17AUG2015

Forecast: 03Z17AUG2015

SREF 700mb TMP (C)

em n3
em n2
em n1 em ctl
em cti
em p1
em p2
em p3
ւս ասս
nmm n2 nmm n1
nmm cti
nmm p1
nmm p2
nmm p3
nmb n3
nmb n2
nmb n1
nmb ctl
nmb p1
nmb p2

em n3
em n2
em n1 em ctl
em cti
em p1
em p2
em p3
ւս ասս
nmm n2 nmm n1
nmm cti
nmm p1
nmm p2
nmm p3
nmb n3
nmb n2
nmb n1
nmb ctl
nmb p1
nmb p2

Forecast: 03Z17AUG2015

Forecast: 03Z17AUG2015

Forecast: 03Z17AUG2015

SPAGHETTI PLOT

SPAGHETTI PLOT

SPAGHETTI PLOT

MEAN + STD DEV

MEAN + STD DEV

MEAN + STD DEV

MEAN + STD DEV

PLUME DIAGRAM MEAN + STD DEV SPAGHETTI PLOT

PLUME DIAGRAM MEAN + STD DEV SPAGHETTI PLOT

BASELINE

PLUME DIAGRAM MEAN + STD DEV SPAGHETTI PLOT

EARLY ANALYSIS

 Sheet 8
 Sheet 11
 Sheet 12
 Sheet 14
 Sheet 13
 Sheet 2

Sheet 1

SS15 12000 AM 198/refi

Sheet 10

400 40

2 nulls

••••

Sheet 13 Sheet 2

Sheet 10

Sheet 1

Sheet 8

Sheet 11 Sheet 12 Sheet 14

e o

2 nulls

•

- plume diagrams had statistically significant improvement over baseline

Sheet 13 Sheet 2

Sheet 10

Sheet 1

Sheet 8

Sheet 11 Sheet 12

Sheet 14

••••••

2 nulls

•

- plume diagrams had statistically significant improvement over baseline
- are there more appropriate analysis methods?

Sheet 13 Sheet 2

Sheet 10

Sheet 12

Sheet 11

Sheet 14

Sheet 1

Sheet 8

••••••••

•

••••••

2 nulls

- plume diagrams had statistically significant improvement over baseline
- are there more appropriate analysis methods?
- to what extent is this effect task dependent?

DISCUSSION POINTS

Does increased realism benefit other decision contexts?

Does increased realism benefit other decision contexts?

Alternative experimental designs?

Does increased realism benefit other decision contexts?

Alternative experimental designs?

Do we give up and go home?

Does increased realism benefit other decision contexts?

Alternative experimental designs?

Do we give up and go home?

Are there other ways to evaluate?

Does increased realism benefit other decision contexts?

Alternative experimental designs?

Do we give up and go home?

Are there other ways to evaluate?

For More Information http://goo.gl/S5ona9

Related Design Study Visually Comparing Weather Features In Forecasts WED 8:30 AM, GRAND

Special thanks to our Ute Weather participants and to Jim Steenburgh for his insightful feedback

samquinan@sci.utah.edu

