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Figure 1: Construction of a time-specific hurricane prediction, NHC Advisory: Hurricane Isaac, 1 PM CDT, Aug. 27, 2012.

Abstract
The U.S. National Hurricane Center (NHC) issues advisories every six hours during the life of a hurricane. These
advisories describe the current state of the storm, and its predicted path, size, and wind speed over the next five
days. However, from these data alone, the question “What is the likelihood that the storm will hit Houston with
hurricane strength winds between 12:00 and 14:00 on Saturday?” cannot be directly answered. To address this
issue, the NHC has recently begun making an ensemble of potential storm paths available as part of each storm
advisory. Since each path is parameterized by time, predicted values such as wind speed associated with the path
can be inferred for a specific time period by analyzing the statistics of the ensemble. This paper proposes an
approach for generating smooth scalar fields from such a predicted storm path ensemble, allowing the user to
examine the predicted state of the storm at any chosen time. As a demonstration task, we show how our approach
can be used to support a visualization tool, allowing the user to display predicted storm position – including
its uncertainty – at any time in the forecast. In our approach, we estimate the likelihood of hurricane risk for a
fixed time at any geospatial location by interpolating simplicial depth values in the path ensemble. Adaptively-
sized radial basis functions are used to carry out the interpolation. Finally, geometric fitting is used to produce a
simple graphical visualization of this likelihood. We also employ a non-linear filter, in time, to assure frame-to-
frame coherency in the visualization as the prediction time is advanced. We explain the underlying algorithm and
definitions, and give a number of examples of how our algorithm performs for several different storm predictions,
and for two different sources of predicted path ensembles.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms, information visualization, uncertainty, ensembles, hurricane prediction
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1. Introduction

The US National Hurricane Center (NHC) begins posting
advisories when a tropical storm, in either the Atlantic or
Eastern Pacific region, develops into a cyclone, meaning an
“organized system of clouds and thunderstorms that origi-
nates over tropical or subtropical waters and has a closed
low-level circulation.” [NOA14d] Advisories take the form
of several text documents, including the Forecast Advisory,
which, along with other information, includes the storm cen-
ter’s predicted latitude and longitude, wind intensity, and
storm size for 12, 24, 36, 48, and 72 hours from the time of
the advisory. Advisories are issued every six hours at 04:00,
10:00, 16:00, and 22:00 US Eastern Standard Time. They are
downloadable from [NOA14b], and easily parsed to extract
prediction information.

Besides the text documents with each advisory, the NHC
produces several visualizations to assist in interpreting the
information in the advisory. The most well-known of these is
officially named the Track Forecast Cone, but is most often
referred to as the uncertainty cone or cone of uncertainty.
An example is shown in Figure 1a. According to the NHC
website [NOA14a],

The cone represents the probable track of the cen-
ter of a tropical cyclone, and is formed by en-
closing the area swept out by a set of circles (not
shown) along the forecast track (at 12, 24, 36
hours, etc). The size of each circle is set so that
two-thirds of historical official forecast errors over
a 5-year sample fall within the circle.

Thus, the width of the cone is an estimate of the uncertainty
in the prediction, based on the NHC’s own performance in
the recent past.

While this visualization gives an overall view of the path
of the hurricane and its associated uncertainty, it does not
facilitate important time and location-specific queries such
as “What is the likelihood that the storm will hit my area,
with hurricane strength winds, by 8:00 a.m. on Friday?”
Emergency managers, responsible for planning in advance
of an oncoming hurricane, are anxious to have such time
and location-specific information readily available (personal
communication: Matthew Green, Federal Emergency Man-
agement Agency representative at the NHC, March 2014). In
addition, moving away from path-based predictions to time
and location-specific predictions would facilitate the super-
position of multiple storm variables, such as wind speed and
storm size, on the display.

In a step towards providing more time and location-
specific information, the NHC recently began augmenting an
advisory with an ensemble of potential paths generated using
Monte Carlo methods that follow an advisory’s path predic-
tion, while accounting for its uncertainty (personal commu-
nication: Mark DeMaria, Technology and Science Branch
Chief, NHC, March 2014). Figure 1b is an example of such

an ensemble, containing 1000 paths, for the same advisory as
the uncertainty cone. Since the paths in an ensemble are sam-
pled in time, they can carry with them time-based predicted
storm characteristics such as storm size and wind speed, and
since the paths are projected geospatially, they can be used
to produce time and position based visuals. For example, the
NHC uses them to produce “heat maps” of wind speed prob-
abilities across the region predicted to be affected by the hur-
ricane [NOA14c]. While such heat maps can be used to pro-
vide useful information, because they are spatially sampled
on a grid they are coarse grained and subject to artifacts due
to undersampling.

The primary contribution of this paper is to demonstrate
an approach to generating and smoothly interpolating robust
statistics from path ensembles, including outlying paths, to
produce time-specific visualizations that inherently include
uncertainty. As a demonstration piece, we outline the devel-
opment of a visualization encoding three levels of positional
storm-strike risk, for a specific point in time. An example of
this visualization is shown in Figure 1c. Beyond strike posi-
tion, the methods of the paper should be applicable to the vi-
sualization of other predicted variables such as storm speed,
wind strength, storm size, and flood risk. The approaches
used that will be of interest to the visualization community
include:

• sampling each path from the ensemble at a specific time,
to create an ensemble of points fixed in time,

• applying the concept of simplicial depth to provide a cen-
trality ordering of time samples,

• developing an adaptive radial basis function interpolation
technique that smoothly interpolates simplicial depth,

• designing a geospatial visualization, incorporating the
concept of risk, based on the simplicial depth field.

2. Background and related work

2.1. Ensembles as an alternate visualization to the
uncertainty cone

Although the uncertainty cone, shown in Figure 1a, is well
known, and reasonably easy to explain, it has several appar-
ent drawbacks. Broad et al. [BLWS07] have pointed out that
the probabilistic concepts underlying the uncertainty cone
can be easily misinterpreted. For instance, instead of read-
ing the cone as the 66% likelihood region through which the
storm center will pass, it is very easily misread as indicating
an increasing storm size. Indeed, the NHC has begun plac-
ing a notice to this effect at the top of their most recent dis-
plays. In addition, the cone is a binary representation, pos-
sibly leading one to a false sense of security outside of the
cone, or an exaggerated sense of certainty inside the cone.

In order to overcome some of the problems with the un-
certainty cone visualization, Cox et al. [CHL13] proposed an
alternative ensemble path visualization. Figure 2a is an ex-
ample of their method, showing a prediction for Hurricane
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(a) Storm path ensemble (b) Uncertainty cone.

Figure 2: Cox et al.’s ensemble display vs. the uncertainty cone, NHC advisory 10 AM CDT, August 27, 2005.

Katrina, compared with Figure 2b, showing the NHC un-
certainty cone for the same advisory. Using a Markov Ran-
dom Field approach, their technique uses a combination of
historical hurricane tracks and the current NHC advisory to
continuously generate and draw possible hurricane tracks in
such a way that the statistical distribution of the resulting
ensemble closely matches that of the distribution implied by
the cone of uncertainty. A user experiment demonstrated that
this method results in estimates of hurricane direction that
are as accurate as those made when viewing the uncertainty
cone, but with some improvement in the user’s estimation of
the possibility of strikes outside of the cone.

None of the hurricane path prediction visualization meth-
ods, either proposed or in use, provide an integrated visual-
ization of the storm, at a specific time and place, including
representations of both uncertainty and storm characteristics.

2.2. Uncertainty visualization from ensembles

Uncertainty visualization has received much recent atten-
tion. The state of the art in the field has been carefully re-
viewed by Pang et al. [PWL96, Pan08], and more recently
by Potter et al. [PRJ12]. Here, we concentrate on providing
an overview of the techniques most relevant to dealing with
path ensembles.

Approaches to gleaning statistical information from en-
sembles fall into two main categories: parametric and non-
parametric. Parametric methods require an a priori assump-
tion of the model describing the data distribution and fo-
cus on estimating the parameters (e.g. mean and variance
for a Gaussian distribution) best matching the data. Non-
parametric methods attempt to describe the data distribution
without any assumption of a model. Since we have no basis
on which to assume a given model, non-parametric methods
seem to be the most attractive choice for our work.

Liu [LY90] developed the notion of simplicial depth,
which is a powerful non-parametric approach for describ-
ing robust statistical summaries of an ensemble of samples.
Simplicial depth defines the centrality of an individual point
within an ensemble of points, and may be used to compute

a center outward ordering of the data. A sample point with
larger simplicial depth is considered to be closer to the center
of the ensemble, and thus more representative of the set of
points. A sample point with smaller simplicial depth is con-
sidered to be less representative. Once the simplicial depth
of each point in an ensemble has been determined, the points
can be sorted based on their depth, with the indices of the
sorted samples providing the structure of a cumulative dis-
tribution. We divide these indices by the number of samples
to produce a normalized ranking of the points.

Simplicial depth is defined as follows. Let V =
{v0,v1,v2, ...,vn−1} be the positions of an ensemble of n
2D points and let vi, v j, and vk be three arbitrarily selected
members of V . Let ∆i, j,k denote the triangle formed by these
points. Thus, the number of triangles is N∆ =

(n
3
)
. The sim-

plicial depth of a point in the ensemble is simply the number
of such triangles containing the point. A straight-forward im-
plementation of the simplicial depth calculation in the two-
dimensional case takes O(n3) computational time. A more
efficient algorithm taking O(n logn) time has been proposed
by Rousseeuw and Ruts [RR96].

Whitaker et al. [WMK13] extended the idea of data depth
to contour band depth, enabling statistical analysis of iso-
contours extracted from scalar fields. They used this con-
tour band depth to estimate median, order statistics, and
outliers for drawing what they call contour boxplots. Later,
Mirzargar et al. [MWK14] built on their ideas to derive sta-
tistical characteristics from ensembles of multivariate curves
extracted from flow fields, allowing them to draw curve box-
plots. As one potential application, they demonstrated how
ensembles of hurricane forecast tracks can be summarized
using their method. Since these methods apply to paths they
are not directly applicable to ensembles of points.

As an extension of their ensemble path visualization, Cox
and House [CH13] began to explore the idea of interac-
tive visualization of path ensembles at fixed points in time.
Rather than rendering complete paths, showing a predic-
tion over an entire forecast period, they implemented a time
slider to fix a time within the prediction and rendered the cor-
responding point on each path in the ensemble. Fig. 3 shows
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(a) 21 hours. (b) 45 hours.

Figure 3: Path ensembles sampled at two different times, NHC advisory 10 AM CDT, August 27, 2005.

examples of their visualization for Hurricane Katrina, with
the time set at 21 and 45 hours from the start of the advisory,
compared with the corresponding uncertainty cone, shown
in outline. While this method highlights the uncertainty in
the forecast in both space and time, the naive rendering of
predicted positions has clear drawbacks. Near the start time
of the advisory, data points are tightly clustered, resulting in
many overlapping points, making it impossible to take ad-
vantage of the point-based display to visually encode other
variables using glyphs. At later times in the advisory, there
is more spread in the points, but the visual clutter of the dis-
play, and the overemphasis of outliers makes the position
distribution difficult to estimate visually. In the work being
reported here, our goal is to build a coherent display of the
distribution of the data, at a specific point in time, starting
with similar time-specific point ensembles.

Going from a set of spatially-distributed points to a con-
tinuous representation of geospatial uncertainty requires the
ability to derive a continuous scalar field over the spatial re-
gion covered by the data samples. In our work, we use sim-
plicial depth to associate a scalar value with each of the data
samples. We then build a continuous scalar field over this
spatial region using radial basis function interpolation.

2.3. Radial basis function interpolation

Radial basis functions [BL88] have important applications
in several fields requiring scattered data interpolation, most
notably in machine learning [Orr96] and in computer graph-
ics [CBC∗01].

Radial basis function (RBF) interpolation builds a con-
tinuous function from a set of samples using radially sym-
metric kernel functions of position x, of the form f (x) =
φ(‖x− x0‖), where x0 denotes the kernel center. A number
of functions can be used as the radial basis kernel, with one
of the most popular being the Gaussian kernel, which we use
in the work reported here.

We associate with each data point i a location vi, a weight
wi, and a kernel function φi. Then the RBF interpolation at a

given point x, is

f (x) =
n−1

∑
i=0

wiφi(‖x− vi‖). (1)

If fi is a scalar value known at each data sample, and
we impose the condition that f (x) interpolates the available
data, for each data sample i we have the linear combination

fi = f (vi) =
n−1

∑
j=0

w jφ j(‖vi− v j‖).

Letting φi, j = φ j(‖vi− v j‖) yields the linear system
φ0,0 φ0,1 . . . φ0,n−1
φ1,0 φ1,1 . . . φ1,n−1

...
...

. . .
...

φn−1,0 φn−1,1 . . . φn−1,n−1




w0
w1
...

wn−1

=


f0
f1
...

fn−1

 ,
whose unknowns are the weights wi.

Since the gaussian kernel has infinite support, the solution
matrix tends to be densely filled. We use this kernel because
of the very broad spread of our data points, but kernels of
finite support might be used to advantage in speeding com-
putation by exploiting matrix sparsity.

A technique, often used with radial basis functions, is that
of matrix regularization. Briefly, what is done is to add a
small value to each element of the diagonal of the matrix
Φ. This allows the solution to closely approximate the data
at the sample points, rather than forcing a strict interpolation
[ALP14]. In all of our RBF work reported here, we are using
a regularization constant of 10−4.

Equation 1, together with the above method of finding a
set of weights, forms the basis of our method for turning an
ensemble of predicted storm centers into the smooth contin-
uous function of simplicial depth.

3. Methodology

Our approach to creating time-specific visualizations from
predicted storm path ensembles begins by sampling the
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paths at specific times. Instead of an ensemble of paths, this
gives us ensembles of locations fixed in time, from which
we can construct visualizations. How to do this in a com-
pelling way is the primary question addressed by this paper.
As already demonstrated in Figure 3, due to spatial under-
sampling, a simple scatter plot of predicted locations tends
to create a confusing display as the prediction time increases.
One possible improvement would be to portray the under-
lying spatial density distribution implied by the hurricane
predictions as a “heat map”. However, our early attempts to
produce heat maps, by laying down a spatial grid and count-
ing data points, led to displays that were too coarse where
data points were tightly clustered, and too incoherent were
they were widely spread.

3.1. Visualizing simplicial depth

Following our early, unsuccessful experiments using data
density, we turned to the concept of simplicial depth. Sim-
plicial depth is a measure of the centrality of data elements
within a data set, giving a clean measurement associated di-
rectly with a data sample, and not dependent upon the local
sampling density. Once simplicial depth is assigned to each
sample, interpolation methods can be used to create a contin-
uous simplicial depth scalar field from the available samples.
We approached this task in two steps.

The first step is to compute the simplicial depth values for
all sample points. The sample points are the predicted lo-
cations from a path ensemble, generated to correspond with
a storm advisory. We then compute the simplicial depth of
each sample point, using the fast algorithm of Rousseeuw
and Ruts [RR96], and sort the sample points in ascending
order by their depth. If n is the number of samples, a point’s
sorted array index, divided by n− 1, is its normalized rank.
The set of points contained within a ranking interval can be
visualized by drawing its convex hull. Figure 4a is a scatter
plot of the rainbow mapped simplicial depth values, and the
red line is the convex hull of the [0%,67%] rank interval.
Although there are good reasons not to use a rainbow color
map for displaying levels [BT07], we began by following the
NHC’s convention for drawing heat maps, moving to a better
designed system later in the study.

The second step is to interpolate across the evaluated sim-
plicial depth values in order to provide a smoothly varying
continuous representation. One interpolation method is to
splat each point into the map, which produces results like
those in Figure 4b, where a transparency is applied to each
splat proportional to its depth. Splatting leaves many uncol-
ored regions, and depends on sampling to a spatial grid. To
overcome these problems, radial basis function (RBF) in-
terpolation can be used, which produces a depth value any-
where in space, and can be used to produce very smooth vi-
sualizations, as illustrated in Figure 4c. While this is a big
improvement over splatting, with the central region filled
smoothly, the outer region is highly serrated. This is because

we were using a constant RBF kernel spread parameter, with
data samples that are very unevenly spread.

3.2. Varying the radial basis function kernel spread

We found that dynamically adjusting the kernel radius, used
in Eq. 1, solves the RBF interpolation problems caused by
a highly nonuniform data density. We do this by selecting
the kernel spread parameter based on the prediction den-
sity distribution – dense regions are interpolated with a nar-
row spread, while sparse regions are interpolated with wide
spread.

To assign a density value to each sample point, we first
create a density field, again using RBF interpolation. Do this
by constructing a uniform rectangular grid over the regional
map and counting the number of the sample points that fall
into each cell. Since the grid cells are evenly distributed, the
required density field can be obtained by using RBF inter-
polation with a constant kernel spread parameter. The Gaus-

sian kernel centered at x0 is given by φ(x) = exp(‖x−x0‖2

2c2 ).
We associate the kernel spread parameter c with a bounding
box, of major dimension w, containing all predicted loca-
tions, and let

c = sw, (2)

where 0≤ s≤ 1 is a user defined fractional scale factor. Us-
ing this kernel spread parameter, we treat all of the grid cells
containing any samples as sample points for building a set
of weights to apply in Equation 1 for interpolating density.

Now, for each sample point vi, in addition to simplicial
depth di, we can ask for a density value ρi from the den-
sity field, which we use to determine an appropriate kernel
spread parameter ci for that point. Given the width of an in-
dividual grid cell δw, we choose the kernel spread to be in-
versely proportional, with constant of proportionality λ, to
the number of data points per unit linear dimension,

ci = λ
δw
√

ρi
. (3)

This gives us a spread parameter that adapts to the density
of sample points in the neighborhood of each sample point,
and provides smooth interpolation across all of the samples.
Example visualizations using this interpolation approach are
shown in Figure 5, with the NHC uncertainty cone shown in
blue for reference. These examples also move away from the
rainbow color map, using a color encoding meant to clearly
show three nested risk regions.

3.3. Visualization design

The GIS and the mobile device communities have adopted
the convention of presenting a geolocation containing un-
certainty by a pale (i.e. transparent) blue dot, with radius
conforming to some (e.g. 95%) confidence interval. Often
this blue dot is augmented by a marker indicating the center
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(a) Raw data points (b) Splatting (c) RBF interpolation

Figure 4: Simplicial depth visualization. NHC advisory 10 AM CDT, August 27, 2005.

(a) 36 hours (b) 69 hours

Figure 5: RBF interpolation with dynamically adjustable kernel radius. NHC Advisory: Hurricane Isaac, 1 pm CDT, Aug. 27, 2012.

of the dot, an outline, and sometimes by a transparency fade
indicating the probability distribution. A recent series of ex-
periments [BHMG14] provides strong evidence that the pale
blue dot, without border or center marking, and (contrary to
intuition) without a transparency fade, provides visual cues
most helpful in aiding experimental subjects to make correct
spatial judgements incorporating uncertainty.

In our visualization design, having a strong feel for the un-
certainty in a prediction is of paramount importance. There-
fore, we elected to present the storm position as three over-
lapping confidence intervals: 33%, 66% and 99%. These in-
tervals are unembellished except that each is of a different
color, and each is of a different transparency. The 33% re-
gion is most opaque, the 66% region less opaque, and the
99% region is highly transparent.

Our color choices started with the color coding common
in emergency systems, e.g. the U.S. Homeland Security Ad-
visory System, which employ red, orange and yellow to
present the top three levels of warning. However, yellow is
a poor choice for our application, since highly transparent
yellow over a white background is almost invisible. Thus, in
our design we use red to indicate the region of highest risk,
orange to indicate the medium risk region, and maroon to
indicate the cautionary region. Given a depth interval and an
associated color, the opacity is given by

α = α0 +dminβ, (4)

where dmin is the minimum normalized data depth of this
interval, 0 ≤ α0 ≤ 1 is the minimum desired opacity, and
0 ≤ β ≤ 1 is a user supplied gain. For all of the relevant
figures in this paper we have set α = 0.02 and β = 0.6.

While the images shown in Figure 5 are close to what we
envisioned, the colored depth intervals are somewhat irreg-
ular shapes, unlike the standard blue dots. The irregularity
is induced by the Monte Carlo ensemble generation process
and does not carry any useful information. Since the irreg-
ular risk regions are already nearly elliptical, we decided to
replace them by minimum enclosing ellipses, rather than cir-
cular dots.

Minimum enclosing ellipses have the property that they
preserve the aspect ratio of a region along two orthogonal
axes. This orthogonality corresponds to the two sources of
uncertainty in the prediction: hurricane bearing, and speed.
Although their effects are not entirely independent, speed
uncertainty tends to manifest in elongation of the risk region
along the predicted path, while bearing uncertainty tends to
broaden the region orthogonal to the path.

Figure 6 shows three snapshots of a Hurricane Isaac ad-
visory, with the risk regions presented in this way. To deter-
mine the center, lengths of minor and major axes, and the ro-
tation angle of the ellipses, we use an image moments-based
algorithm proposed by [RVC02].

One of our eventual goals is to develop an interactive ap-
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(a) 12 hours (b) 36 hours (c) 60 hours

Figure 6: Minimum enclosing ellipses of depth intervals. NHC Advisory: Hurricane Isaac, 1 pm CDT, Aug. 27, 2012.

plication that embeds this approach to storm position visu-
alization, allowing the user to “scrub” through time. Inter-
polation in time is easily achieved via any one of a number
of interpolation methods across the known data points in a
path in the ensemble. These are every hour in the NHC en-
sembles, and every three hours in the method by Cox and
House. In our current work we are using simple linear inter-
polation, after determining that using a higher order method
produced visually indiscernible results.

A problem with the ellipse representation became ap-
parent while producing an animation to simulate scrubbing
through time. When the ellipses become nearly circular, the
choice of minor and major axis is not stable, leading to rapid
90◦ flips of ellipse orientation, which results in disturbing
jitter in the animation. Figure 7 plots major axis angle over
a series of 138 animation frames for the Hurricane Isaac ex-
ample. This instability is very apparent in the top curve of
the figure, showing several of these axis flips.

To eliminate the visual noise resulting from this instabil-
ity, we developed a non-linear smoothing filter designed to
ignore small changes in angle across time steps but suppress
large changes. Detecting the potential for axis flips could be
done by eigenvalue analysis, but our filter works well and
fits more naturally into the signal analysis pipeline. We first
compute ∆θ = θ

[i]−θ
[i−1]

π
, the normalized difference between

the ellipse orientation angle in time step i and the previous
time step i−1. We then compute two weights

w1 =
1

1+(q∆θ)2 , w2 =
(q∆θ)2

1+(q∆θ)2 ,

where q is a parameter controlling the gain of the filter. The
filtered angle at the current time is given by

θ
[i]′ = w1θ

[i]+w2θ
[i−1]. (5)

If ∆θ is small, w1 dominates, selecting the current angle,
while if ∆θ is large, w2 dominates, selecting the previous an-
gle. In our experiments, setting q = 14 gave the best results.
The middle curve in Figure 7 shows the result after applying
this non-linear filter.

While the large angular jumps observed in the original

curve have been successfully removed, there are still small
perturbations that interfere with frame-to-frame visual co-
herency. To filter out these bumps, we utilize a Gaussian fil-
ter, with kernel width 5, centered on the current time. This
gives filtered results like those shown in the bottom curve in
Figure 7, and provides smooth frame-to-frame transitions.

A possible criticism of this approach is that the filtered
result may not be faithful to the data. The combination of
the two filters is applied only to the orientation angle of the
ellipse, not to the radii of the major and minor axes. The non-
linear filter is not strongly sensitive to small angle changes,
and is thus only removing large orientation flips in the se-
quence of visualizations. The smoothing filter is only remov-
ing small perturbations from the data, thus removing jitter.
These have a negligible effect on the overall orientation of
the ellipse angle, as can be clearly seen by comparing the
curves in Figure 7.

4. Results

In this section, we show experimental results we have ob-
tained, demonstrating the utility of the proposed visualiza-
tion technique to explore time-specific predictions both from
ensembles produced by the NHC, and generated by method
of Cox et al. [CHL13] We also suggest settings for all user-
defined parameters required in our approach.

Recall that we employ two RBF interpolations in our ap-
proach. We utilize a RBF interpolation with constant ker-
nel radius to obtain a density field. Fractional parameter s
adjusts the kernel spread parameter c based on the longest
dimension of the sample bounding box, as given in Equa-
tion 2. To interpolate a simplicial depth field, we use another
RBF interpolation with adaptive kernel radii, computed us-
ing a constant of proportionality λ as given in Equation 3.
For rendering, we control opacities of the risk zones using
Equation 4, using parameters to set a minimum opacity, and
to scale opacity by simplicial depth, but these are fixed based
on visual preference, as given in Section 3.3, and our ellipse
angle filter parameters, are also fixed based on experimental
results, as also explained in that section.
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Figure 7: Rotation angles as a function of frame number.

The results of applying our visualization technique on en-
sembles produced by the National Hurricane Center have al-
ready been shown, for three different times in the prediction,
for a Hurricane Isaac advisory in Figure 6. The parameters
used were selected experimentally, and were s = 0.35, and
λ = 0.3.

We also applied our method to advisories for several dif-
ferent storms, using path ensembles generated using the
method of Cox et al. The results are shown in Figure 8. The
images are for advisories for hurricanes Katrina, Rita, and
Ida. In the top row we show the NHC uncertainty cone for
each hurricane, and in the next three rows we show the pre-
dictions for 12 hours, 36 hours and 60 hours. The system
parameters used to generate these results were s = 0.35, and
λ = 0.15.

Importantly, none of the user-settable parameters in our
approach needed to be adjusted across a variety of different
storm advisories. The only parameter needing adjustment
across ensemble generation methods was λ, controlling the
adaptive kernel spread parameter in Equation 3. Because the
method of Cox et al. generates a broader spread of hurricane
paths than the method used by the NHC, the density in the
denominator of Equation 3 tends to be low, so the value of λ

must be decreased to compensate. Thus, our method appears
to be robust, requiring only the tuning of one parameter, and
this only if there is a change in ensemble generation method.

A criticism of our approach is that, as time progresses into
a prediction, the sizes of the risk regions increase, leading to
the very strong perception that the storm itself is increas-
ing in size. This problem is also inherent in the NHC un-
certainty cone, and indeed in any geospatial display that at-
tempts to track dispersion in a prediction using a summary
display. This is not a soluble problem, as long as spatial ex-
tent is being used as an uncertainty measure. As yet unpub-
lished studies, underway in our research group, are produc-
ing strong evidence that ensemble displays do not induce this
same perceptual anomaly. Therefore, our research plan is to
build on the work reported here, resampling of the simplicial
depth field in a well-distributed way to produce a set of ex-
emplar storm positions that can be displayed as points, but
without the visual clutter and confusion of the early work of
Cox and House shown in Figure 3.

5. Conclusions

We have presented a visualization technique to provide ex-
ploration of time-specific predictions from an ensemble of
potential hurricane paths. These paths are sampled in time,
to create a set of points for each time period, which are as-
signed a scalar value associated with their simplicial depth.
We then create a scalar field over the region covered by the
samples using radial basis function interpolation. Using this
field, we determine risk regions based on simplicial depth,
and render them using best-fit elliptical approximations. The
approach has been shown to be robust across a number of
storm predictions, and across two different Monte Carlo path
ensemble generation approaches.

This work provides a simple geospatially located visual-
ization, incorporating uncertainty, and keyed to a particular
point in time. Our intent is that this will form the basis for
future research leading to a set of interactive tools for explor-
ing a hurricane prediction in both time and space. Given the
structure for spatial interpolation that we have developed,
it should be possible to interpolate storm parameters other
than strike risk, such as storm speed, bearing, wind speed,
size, and flood risk. This has the potential to enable devel-
opment of an integrated hurricane prediction visualization
application to be used in the field by emergency managers.

One impediment to developing such an interactive appli-
cation is the speed of the current algorithm. While most
stages of the computation can be easily accelerated to in-
teractive rates, the solution for RBF interpolation weights
involves solving an N x N linear system in the number of
sample points. This is prohibitively slow for a typical sys-
tem of 1000 or more samples. Our plans include investigat-
ing fast algorithms for getting a good approximate solution
to this system, with special attention to choosing a subset of
the samples that minimizes approximation error.

While this study was intended to support future work
on visualization of time-specific predictions from time-
parameterized path ensembles, it also stands alone as a
project to develop a new visualization tool for evaluating
hurricane risk. The next natural step in this side of the work
will be to conduct a study comparing how users perform on
time and place specific risk evaluation tasks using this vi-
sualization versus other proposed alternatives, including the
uncertainty cone itself, and a scattered point approach dis-
playing color-coded path samples.
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Figure 8: Time-specific visualizations of risk regions for four different hurricane advisories.
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